恒仟文档网 - 设为首页 - 加入收藏
当前位置 首页 > 范文大全 > 教案设计 >

2023年高一数学必修三教案4篇

时间:2024-08-05 11:25:18 来源:网友投稿

高一数学必修三教案了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。(2)一元二次不等式会从实际情境中抽象出一元二次不等式模型。通过函数图象了下面是小编为大家整理的高一数学必修三教案4篇,供大家参考。

高一数学必修三教案4篇

高一数学必修三教案篇1

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型。

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

高一数学必修三教案篇2

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的"空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12 练习1、2 P18习题1.2 A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

1.2.2 空间几何体的直观图(1课时)

高一数学必修三教案篇3

1教学目标

1、知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积的求法。

2、能运用公式求解柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系。

2学情分析

通过学习空间几何体的结构特征,空间几何体的三视图和直观图,了解了空间几何体和平面图形之间的关系,从中反映出一个思想方法,即平面图形和空间几何体的互化,尤其是空间几何问题向平面问题的转化。该部分内容中有些是学生已经熟悉的,在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想——化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用。

3重点难点

重点:知道柱体、锥体、台体侧面展开图,弄懂柱体、锥体、台体的表面积公式。

难点:会求柱体、锥体和台体的表面积,并知道柱体、锥体和台体表面积之间的关系。

4教学过程 4.1 第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积

(一)、基础自测:

1、棱长为a的正方体表面积为__________.

2、长、宽、高分别为a、b、c的长方体,其表面积为___________________.

3、长方体、正方体的侧面展开图为__________.

4、圆柱的侧面展开图为__________.

5、圆锥的侧面展开图为__________.

(二)。尝试学习

1、柱体的表面积

(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示。

(2)面积:柱体的表面积S表=S侧+2S底。特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.

2、锥体的表面积

(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示。

(2)面积:锥体的表面积S表=S侧+S底。特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.

3、台体的表面积

(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示。

(2)面积:台体的表面积S表=S侧+S上底+S下底。特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.

(三)。互动课堂

例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1= m.xiaozongshi.com 60°,∠BB1C1=90°,侧棱长为b,则其侧面积为(  )

A. B.ab C.(+)ab D.ab

例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是(  )

A.2π B. C.6π D.9π

(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积。

例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为(  )

A.      B.2 C. D.

(四)。巩固练习:

1、一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.

2、已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4  cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2)。

3、如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为(  )

A.81π B.100π C.14π D.169π

(五)、 课堂小结:

求柱体表面积的方法

(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和。

(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法。所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解。

(3)求圆柱的侧面积只需利用公式即可求解。

(4)求棱锥侧面积的一般方法:定义法。

(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.

(6)求棱台侧面积的一般方法:定义法。

(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.

五、当堂检测

1、(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是(  )

A.32 B.16+16

C.48 D.16+32 网]

2、(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为(  )

A.180 B.200 C.220 D.240

3、(2013广东)若一个圆台的正视图如图所示,则其侧面积等于(  )

A.6 B.6π C.3π D.6π

六、作业:(1)课时闯关(今晚交)

七、课后反思:本节课你会哪些?还存在哪些问题?

1.3 空间几何体的表面积与体积

课时设计 课堂实录

1.3 空间几何体的表面积与体积

1第一学时 教学活动 活动1【导入】第1课时 柱体、锥体、台体的表面积

(一)、基础自测:

1、棱长为a的正方体表面积为__________.

2、长、宽、高分别为a、b、c的长方体,其表面积为___________________.

3、长方体、正方体的侧面展开图为__________.

4、圆柱的侧面展开图为__________.

5、圆锥的侧面展开图为__________.

(二)。尝试学习

1、柱体的表面积

(1)侧面展开图:棱柱的侧面展开图是____________,一边是棱柱的侧棱,另一边等于棱柱的__________,如图①所示;圆柱的侧面展开图是_______,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图②所示。

(2)面积:柱体的表面积S表=S侧+2S底。特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=__________,表面积S表=__________.

2、锥体的表面积

(1)侧面展开图:棱锥的侧面展开图是由若干个__________拼成的,则侧面积为各个三角形面积的_____,如图①所示;圆锥的侧面展开图是_______,扇形的半径是圆锥的______,扇形的弧长等于圆锥的__________,如图②所示。

(2)面积:锥体的表面积S表=S侧+S底。特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=__________,表面积S表=__________.

3、台体的表面积

(1)侧面展开图:棱台的侧面展开图是由若干个__________拼接而成的,则侧面积为各个梯形面积的______,如图①所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图②所示。

(2)面积:台体的表面积S表=S侧+S上底+S下底。特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=____________,表面积S表=________________________.

(三)。互动课堂

例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱长为b,则其侧面积为(  )

A. B.ab C.(+)ab D.ab

例2:(1)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的侧面积是(  )

A.2π B. C.6π D.9π

(2)已知棱长均为5,底面为正方形的四棱锥S-ABCD,如图,求它的侧面积、表面积。

例3:一个四棱台的上、下底面都为正方形,且上底面的中心在下底面的投影为下底面中心(正四棱台)两底面边长分别为1,2,侧面积等于两个底面积之和,则这个棱台的高为(  )

A.      B.2 C. D.

(四)。巩固练习:

1、一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为________.

2、已知一个四棱锥底面为正方形且顶点在底面正方形射影为底面正方形的中心(正四棱锥),底面正方形的边长为4  cm,高与斜高的夹角为30°,如图所示,求正四棱锥的侧面积________和表面积________(单位:cm2)。

3、如图所示,圆台的上、下底半径和高的比为1:4:4,母线长为10,则圆台的侧面积为(  )

A.81π B.100π C.14π D.169π

(五)、 课堂小结:

求柱体表面积的方法

(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和。

(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法。所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解。

(3)求圆柱的侧面积只需利用公式即可求解。

(4)求棱锥侧面积的一般方法:定义法。

(5)求圆锥侧面积的一般方法:公式法:S侧=πrl.

(6)求棱台侧面积的一般方法:定义法。

(7)求圆台侧面积的一般方法:公式法S侧=2(r+r′)l.

五、当堂检测

1、(2011·北京)某四棱锥的三视图如图所示,该四棱锥的表面积是(  )

A.32 B.16+16

C.48 D.16+32 网]

2、(2013·重庆)某几何体的三视图如图所示,则该几何体的表面积为(  )

A.180 B.200 C.220 D.240

3、(2013广东)若一个圆台的正视图如图所示,则其侧面积等于(  )

A.6 B.6π C.3π D.6π

六、作业:(1)课时闯关(今晚交)

七、课后反思:本节课你会哪些?还存在哪些问题?

高一数学必修三教案篇4

课题

1.2.1投影与三视图

课型

新课

教学目标

1.了解中心投影和平行投影的概念;

2.能够判断简单的空间几何体(柱、锥、台、球及其简单组合体)的三视图,能够根据三视图描述基本几何体或实物原型;

3.简单组合体与其三视图之间的相互转化。

教学过程

教学内容

备注

一、

自主学习

1.照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

2.在建筑、机械等工程中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,你想知道这方面的基础知识吗?

二、

质疑提问

下图中的手影游戏,你玩过吗?

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

思考1:不同的光源发出的"光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?

一、中心投影与平行投影

思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?

思考3:用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?

思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?

思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影。一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?

思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?

投影的分类:

把一个空间几何体投影到一个平面上,可以获得一个平面图形。从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:

正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左面向右面正投影,得到的投影图。

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

几何体的正视图、侧视图和俯视图,统称为几何体的三视图。

思考1:正视图、侧视图、俯视图分别是从几何体的哪三个角度观察得到的几何体的正投影图?它们都是平面图形还是空间图形?

三、

问题探究

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考5:球的三视图是什么?下列三视图表示一个什么几何体?

例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同。

四、

课堂检测

五、

小结评价

1.空间几何体的三视图:正视图、侧视图、俯视图;

2.三视图的特点:一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样;

3.三视图的应用及与原实物图的相互转化。

关键词: 高一 必修 教案 高一数学必修三教案全册 高一数学必修三教案第一章 高一必修三数学教学视频 高一数学必修三教材分析 高一必修三数学课本答案及解析 高一必修三数学课后题答案人教版 新教材高一数学必修三 高一数学必修三课件 高一数学必修三课程

Top